🔥
Exploratory Data Analysis (EDA)
CtrlK
WebsiteGithub
  • 👋Welcome!
  • Course Content
    • 1. Introduction
    • 2. Fundamentals
    • 3. Dataset Selection and Understanding
    • 4. Data Cleaning and Preprocessing
    • 5. Techniques and Approaches
    • 6. Data Visualization
    • 7. Statistical Measures and Hypothesis Testing
    • 9. Case Studies
    • 11. Best Practices and Tips for Effective EDA
    • 12. Future Trends and Emerging Technologies
  • Dataset
    • ℹ️Kaggle
  • Tools and Software
    • ✨Data Analysis Tools
    • 🐍Python Library
    • ⛏️Python tools
    • ®️® ® ® The R Project
    • 🌀Data Exploration
    • 🎯Data Quality
    • 📔Data Profiling
    • 📺Visualization
  • Tech Exploration
    • 🎬Youtube
    • ☁️Github
    • 🔬Lab
    • 💼Case Study
  • Reference
    • API Reference
Powered by GitBook
On this page
  1. Tech Exploration

🎬Youtube

  • Exploratory Data Analysis Tutorial | What Is EDA | How EDA Works | EDA In Python | Intellipaat

  • Live Day 1-Live Session On EDA And Feature Engineering- Zomato Dataset

  • Live Day 2-Live Session On EDA And Feature Engineering- Black Friday Dataset

  • Live Day 3-Live Session On EDA And Feature Engineering- Flight Price Prediction Dataset

  • Step By Step Process In EDA And Feature Engineering In Data Science Projects

  • Exploratory Data Analysis(EDA) of Titanic dataset

  • Exploratory Data Analysis (EDA) Using Python | Python Data Analysis | Python Training | Edureka

  • Exploratory Data Analysis with Pandas Python

  • How to Do Data Exploration (step-by-step tutorial on real-life dataset)

PreviousVisualizationNextGithub

Last updated 2 years ago